190 research outputs found

    AVFace: Towards Detailed Audio-Visual 4D Face Reconstruction

    Full text link
    In this work, we present a multimodal solution to the problem of 4D face reconstruction from monocular videos. 3D face reconstruction from 2D images is an under-constrained problem due to the ambiguity of depth. State-of-the-art methods try to solve this problem by leveraging visual information from a single image or video, whereas 3D mesh animation approaches rely more on audio. However, in most cases (e.g. AR/VR applications), videos include both visual and speech information. We propose AVFace that incorporates both modalities and accurately reconstructs the 4D facial and lip motion of any speaker, without requiring any 3D ground truth for training. A coarse stage estimates the per-frame parameters of a 3D morphable model, followed by a lip refinement, and then a fine stage recovers facial geometric details. Due to the temporal audio and video information captured by transformer-based modules, our method is robust in cases when either modality is insufficient (e.g. face occlusions). Extensive qualitative and quantitative evaluation demonstrates the superiority of our method over the current state-of-the-art

    S-VolSDF: Sparse Multi-View Stereo Regularization of Neural Implicit Surfaces

    Full text link
    Neural rendering of implicit surfaces performs well in 3D vision applications. However, it requires dense input views as supervision. When only sparse input images are available, output quality drops significantly due to the shape-radiance ambiguity problem. We note that this ambiguity can be constrained when a 3D point is visible in multiple views, as is the case in multi-view stereo (MVS). We thus propose to regularize neural rendering optimization with an MVS solution. The use of an MVS probability volume and a generalized cross entropy loss leads to a noise-tolerant optimization process. In addition, neural rendering provides global consistency constraints that guide the MVS depth hypothesis sampling and thus improves MVS performance. Given only three sparse input views, experiments show that our method not only outperforms generic neural rendering models by a large margin but also significantly increases the reconstruction quality of MVS models. Project webpage: https://hao-yu-wu.github.io/s-volsdf/

    Learning Probabilistic Topological Representations Using Discrete Morse Theory

    Full text link
    Accurate delineation of fine-scale structures is a very important yet challenging problem. Existing methods use topological information as an additional training loss, but are ultimately making pixel-wise predictions. In this paper, we propose the first deep learning based method to learn topological/structural representations. We use discrete Morse theory and persistent homology to construct an one-parameter family of structures as the topological/structural representation space. Furthermore, we learn a probabilistic model that can perform inference tasks in such a topological/structural representation space. Our method generates true structures rather than pixel-maps, leading to better topological integrity in automatic segmentation tasks. It also facilitates semi-automatic interactive annotation/proofreading via the sampling of structures and structure-aware uncertainty.Comment: 16 pages, 11 figure

    Patch-level Gaze Distribution Prediction for Gaze Following

    Full text link
    Gaze following aims to predict where a person is looking in a scene, by predicting the target location, or indicating that the target is located outside the image. Recent works detect the gaze target by training a heatmap regression task with a pixel-wise mean-square error (MSE) loss, while formulating the in/out prediction task as a binary classification task. This training formulation puts a strict, pixel-level constraint in higher resolution on the single annotation available in training, and does not consider annotation variance and the correlation between the two subtasks. To address these issues, we introduce the patch distribution prediction (PDP) method. We replace the in/out prediction branch in previous models with the PDP branch, by predicting a patch-level gaze distribution that also considers the outside cases. Experiments show that our model regularizes the MSE loss by predicting better heatmap distributions on images with larger annotation variances, meanwhile bridging the gap between the target prediction and in/out prediction subtasks, showing a significant improvement in performance on both subtasks on public gaze following datasets.Comment: Accepted to WACV 202
    • …
    corecore